BBH-003-001618 Seat No. _____ ## B. Sc. (Sem. VI) (CBCS) Examination July - 2021 BSMT - 603 (A): Mathematics (Optimization And Numerical Analysis - II) (Old Course) Faculty Code: 003 Subject Code: 001618 | Time : $2\frac{1}{2}$ Hours] | [Total Marks : 70 | |---|--------------------------------------| | Instruction: (1) All questions are compulsory. (2) Figure to the right indicates full marks of the question. | | | 1. Give answers of all following questions. | [20] | | Define Surplus variable. Define Convex function. To solve maximization problem using Two phase method an artificial variable in objective function is The method used to solve an assignment problem is called | · | | 5. Full form of LCM is | | | 6. If for a given solution, a slack variable is equal to zero the is infeasible. (True/False) 7. If an optimal solution is degenerate, then are alternative o solutions. (True/False) 8. In the optimal solution, more than one empty cell have the it indicates the problem has alternate solution. (True/False) | ptimal eir opportunity cost as zero, | | 9. A necessary and sufficient condition for the existence of a transportation problem is total cost is greater than total10. The dummy source or destination in a transportation prosatisfy rim condition. (True/False) | l supply.(True/False) | | 11. Which interpolation formula is an outcome of average of Interpolation and Gauss-Backward interpolation formula.12. Write Bessel's Formula. | la? | | 13. Newton's divided difference interpolation is same as domain data is at equidistance. 14. The nth divided differences of a polynomial of nth degree | | | | | - 15. Write D in term of Δ . - 16. Minimum number of subintervals required to apply Trapezoidal and Simpson's 3/8 rule is______. - 17. General Quadrature formula known as - 18. What is Numerical Differentiation? - 19. Write Taylor's series formula to solve ordinary differential equation. - 20. Runge-Kutta's method of second order produces more accurate solution than Euler method. (True/False) ### 2 (A) Attempt any THREE [06] 1. Obtain dual of the following LPP. Minimize $$Z = x_1 - 3x_2 + 2x_3$$ Subject to $$3x_1 - x_2 + 2x_3 \le 7$$ $$-2x_1 + 4x_2 + 0x_3 \le 12$$ $$-4x_1 + 3x_2 + 8x_3 \le 10$$ $$x_1, x_2, x_3 \ge 0$$ 2. Solve the following assignment problem | | | MEN | | | | | |------|---|-----|----|----|--|--| | | | A | В | С | | | | Task | 1 | 60 | 50 | 40 | | | | | 2 | 40 | 45 | 55 | | | | | 3 | 55 | 70 | 60 | | | - 3. Write matrix form of LPP. - 4. Define (i) Feasible solution (ii) Optimal solution of the transportation problem. - 5. Describe NWCM method. - 6. Give the mathematical formulation of an assignment problem. ### (B) Attempt any THREE [09] 1. Solve the following LPP using graphical method $$Minimize Z = 20x_1 + 10x_2$$ Subject to $$x_1 + 2x_2 \le 40$$ $$3x_1 + x_2 \ge 30$$ $$4x_1 + 3x_2 \ge 60$$ $$x_1, x_2 \ge 0$$ - 2. Explain primal-dual relationship for the linear programming problem. - 3. Explain artificial variable with example. - 4. Find C_{ij} 's only for empty cells | | | | | | Available | |-------------|-------|-------|-------|-------|-----------| | | 20(1) | | 10(1) | | 30 | | | | 20(3) | 20(2) | 10(1) | 50 | | | | 20(2) | | | 20 | | Requirement | 20 | 40 | 30 | 10 | | 5. Solve the following assignment problem | | | MEN | | | | |------|-----|-----|----|----|----| | | | A | В | C | D | | TASK | I | 16 | 52 | 34 | 22 | | | II | 26 | 56 | 8 | 52 | | | III | 76 | 38 | 36 | 30 | | | IV | 38 | 52 | 48 | 20 | 6. Find the initial basic feasible solution for given problem by using VAM | | | | То | | | | | |--------|-------|-------|-------|-------|-------|----|--| | | | D_1 | D_2 | D_3 | D_4 | | | | | S_1 | 19 | 30 | 50 | 10 | 7 | | | From | S_2 | 70 | 30 | 40 | 60 | 9 | | | | S_3 | 40 | 8 | 70 | 20 | 18 | | | Demand | | 5 | 8 | 7 | 14 | 34 | | ## (C) Attempt any TWO [10] - 1. Explain simplex algorithm. - 2. Write algorithm of Hungarian method for an assignment problem. - 3. Solve LPP using Big M method $$Minimize Z = x_1 + x_2$$ Subject to $$2x_1 + x_2 \ge 4$$ $$x_1 + 7x_2 \ge 7$$ $$x_1, x_2 \ge 0$$ 4. Obtain optimal solution of the following transportation problem using MODI method. | | | | To | | | | | | | |--------|-------|-------|-------|-------|-------|--------|--|--|--| | | | D_1 | D_2 | D_3 | D_4 | Supply | | | | | | S_1 | 6 | 4 | 1 | 5 | 14 | | | | | From | S_2 | 8 | 9 | 2 | 7 | 16 | | | | | | S_3 | 4 | 3 | 6 | 2 | 5 | | | | | Demand | | 6 | 10 | 15 | 4 | 35 | | | | 5. Explain MODI method. ### 3 (A) Attempt any THREE [06] 1. If $$f(x) = \frac{1}{x}$$, then find $f(a, b, c, d)$. 2. Prove that divided differences are symmetric in all their argument. 3. If $$f(0) = 1$$, $f(2) = 5$, $f(3) = 10$ and $f(x) = 14$, find x . 4. Evaluate $\int_0^1 f(x) dx$, using Trapezoidal Rule, f(x) is given by | x | 0 | 0.5 | 1 | |------|---|-----|-----| | f(x) | 1 | 0.8 | 0.5 | $\frac{f(x)}{f(x)} = \frac{0.5}{1} = \frac{1}{0.8}$ 5. Explain Taylor series method to solve $\frac{dy}{dx} = f(x, y)$; $y(x_0) = y_0$. 6. Write working rule Range - Kutta's method of fourth order. #### (B) Attempt any THREE [09] 1. Evaluate $$\int_2^6 \frac{dx}{x}$$, Using Simpson's $\frac{1}{3}$ rd Rule. 2. If $$f(x) = x^3 - 2x$$, then find $f(2,4,9,10)$. 3. Explain Picard's method to solve $$\frac{dy}{dx} = f(x, y)$$; $y(x_0) = y_0$. - 4. Derive General Quadrature formula. - 5. Using Lagrange's interpolation formula, find f(x) | X | 0 | 2 | 3 | 6 | |---|-----|-----|-----|-----| | у | 648 | 704 | 729 | 792 | 6. Explain Euler's method. ### (C) Attempt any TWO [10] - 1. Derive Gauss Backward Interpolation formula. - 2. Derive Newton Divided Difference formula. Also deduce Gregory Newton forward difference formula. - 3. Obtain the value of f'(0.5) using sterling's formula to the following data: | x | 0.35 | 0.40 | 0.45 | 0.50 | 0.55 | 0.60 | 0.65 | |------|-------|-------|-------|-------|-------|-------|-------| | f(x) | 1.521 | 1.506 | 1.488 | 1.467 | 1.444 | 1.418 | 1.389 | - 4. Solve $\frac{dy}{dx} = y \frac{2x}{y}$, y(0) = 1 in the range $0 \le x \le 0.2$ using (1) Improved Euler's Method. (2) Modified Euler's Method. - 5. Solve $\frac{dy}{dx} = y x^2$ by Milne's method and compute y at x = 0.80 when: | x | 0 | 0.2 | 0.4 | 0.6 | |---|---|---------|---------|---------| | ν | 1 | 1.12186 | 1.46820 | 1.73790 |